DIMENSION AND SUPERPOSITION OF CONTINUOUS FUNCTIONS

BY

MICHAEL LEVINT

Department of Mathematics, University of Haifa, Haifa 31999, Israel

ABSTRACT

We give a relatively short proof of the following theorem of Sternfeld: Let X be a compact metric space with dim $X \ge 2$, and let $X \subset R^m$ be an embedding such that every $f \in C(X)$ can be represented as

$$f(x_1, x_2, ..., x_m) = \sum_{i=1}^m g_i(x_i), \quad (x_1, x_2, ..., x_m) \in X, \quad g_i \in C(R).$$

Then $m \ge 2 \dim X + 1$.

The theorem of Ostrand [3] (see also [4]), which generalizes the well known Kolmogorov's superposition theorem [2], says, in particular, that for every *n*-dimensional compact metric space X there exists an embedding $X \subset R^{2n+1}$ which satisfies the following: every $f \in C(X)$ can be represented as

$$f(x_1, x_2, \ldots, x_{2n+1}) = \sum_{i=1}^{2n+1} g_i(x_i), \qquad (x_1, x_2, \ldots, x_{2n+1}) \in X, \quad g_i \in C(R),$$

where C(X) is the Banach space of real valued continuous functions on X.

It is clear that the number 2n + 1 is the best possible. (There are *n*-dimensional spaces which do not embed in R^{2n} .) Sternfeld [5] proved that it cannot be reduced for any *n*-dimensional compact metric space. In this paper we present a proof for this result of Sternfeld which is simpler than the original proof. The proof is based on ideas introduced in [5] (see [6] for a survey of related topics).

Received November 10, 1989

[†] This is a part of the author's Ph.D. thesis prepared at the University of Haifa under the supervision of Professor Y. Sternfeld.

Let X be a compact metric space. We identify the dual $C(X)^*$ of C(X) with the space of real regular Borel measures on X with the total variation as norm.

Let $R_a=R$, $a\in N$ and let $A\subset N$ be a finite set. Denote $R_A=\Pi_{a\in A}$ R_a and let $R_\varnothing=0\in R$. Clearly R_A is homeomorphic to $R^{|A|}$, where |A| is the cardinality of A. Let $P_B:R_A\to R_B$, $B\subset A$ denote the canonical projection. Let $X\subset R_A$, $\mu\in C(X)^*$ and $a\in A$. The measure μ_a in $C(R_a)^*$ is defined by $\mu_a(V)=\mu(P_a^{-1}(V)\cap X),\ V\subset R_a$ a Borel set.

DEFINITION 1 [6]. Let X be a compact metric space. An embedding $X \subset R_A$ is said to be basic if every $f \in C(X)$ can be represented as $f(x) = \sum_{a \in A} g_a(x_a)$, $x = (x_a)_{a \in A} \in X$, $g_a \in C(R_a)$.

With this terminology the result which we intend to prove here is the following.

STERNFELD'S THEOREM [5]. Let X be a compact metric space with dim X > 2, and let $X \subset R_A$ be a basic embedding. Then $|A| \ge 2 \dim X + 1$.

We recall first the following result which gives a connection between basic embeddings and Borel measures.

THEOREM 1 [4]. Let X be a compact metric space. $X \subset R_A$ is a basic embedding if and only if there exists a constant $\alpha > 0$, such that for each $\mu \in C(X)^*$

$$\beta \ge \alpha \parallel \mu \parallel,$$

where $\|\mu\|$ is the norm of μ and $\beta = \beta(\mu) = \max\{\|\mu_a\| : a \in A\}$.

Let $X \subset R_A$ and $K \in N$. Set

$$T_K = T_K(X \subset R_A) = \{B : B \subset A, |B| = K, \text{ int } P_B(V) \text{ is nonempty in } R_B \text{ for every nonempty open } V \text{ in } X\}$$

where int $P_B(V)$ is the interior of $P_B(V)$.

Let $C^+(N)$ be the set of nonnegative real valued functions on N with a finite support and let 1_A denote the indicator function of A. Denote $I(f) = \sum_{i \in N} f(i)$, $f \in C^+(N)$. Obviously I(cf) = cI(f), I(f+g) = I(f) + I(g), $I(1_A) = |A|$, where $f, g \in C^+(N)$ and $c \in R$, $c \ge 0$.

DEFINITION 2. Let $X \subset R_A$. $T_K = T_K(X \subset R_A)$ is said to be τ -full if 1_A can be represented as $1_A = f + \sum_{B \in T_K} \lambda_B 1_B$, where $\lambda_B \in R$, $\lambda_B \ge 0$, $f \in C^+(N)$ and $I(f) = |A| - \tau$. If $\tau = |A|$ then T_K is said to be full.

It is clear that the fullness of T_K is equivalent to the existence of a representation of the form

$$1_{A} = \sum_{B \in T_{K}} \lambda_{B} 1_{B}, \qquad \lambda_{B} \ge 0.$$

It is easy to check that the numbers λ_B can be chosen to be rationals. Hence (2) is equivalent to

(3)
$$n_A 1_A = \sum_{B \in T_K} n_B 1_B, \quad n_A, n_B \in \mathbb{N}, \quad n_A > 0.$$

We shall show in the second part of this paper that the assumption of existence of a basic embedding of a compact metric space $X \subset R_A$, with $|A| \le 2 \dim X$, implies the fullness of $T_{\dim X}(X \subset R_A)$. Then Sternfeld's theorem will follow from:

THEOREM 2. Let X be a compact metric space, and let $X \subset R_A$ be a basic embedding. If $T_K = T_K(X \subset R_A)$ is full for some $K \ge 2$, then $|A| \ge 2K + 1$.

PROOF. Assuming $|A| \le 2K$, we shall construct a set \mathscr{E} of Borel measures on X with a finite support so that $\inf\{\beta(\mu)/\|\mu\|: \mu \in \mathscr{E}\} = 0$. This, by Theorem 1, contradicts the assumption that $X \subset R_A$ is a basic embedding and proves Theorem 2.

Let us first introduce some notation. Let Y, Z be finite subsets of X, so that |Y| = |Z| and $Y \cap Z = \emptyset$. By (Y, Z) we denote the measure $\mu = \sum_{y \in Y} \delta_y - \sum_{z \in Z} \delta_z$, where δ_x is the Dirac measure with mass 1 at x. Clearly

$$||(Y, Z)|| = |Y| + |Z| = 2|Y| = 2|Z|.$$

It is easy to verify that for each measure (Y, Z) on X and every $a \in A$ there exists a measure (Y^a, Z^a) on X such that

$$(4) (Y,Z)_a = (Y^a,Z^a)_a, Y^a \subset Y, Z^a \subset Z,$$

(5)
$$\|(Y^a, Z^a)\| = \beta((Y, Z)).$$

The fullness of T_K implies that T_K covers A. Applying this fact it is easy to check that for each nonempty open set V in X and every $l \in N$ there exist nonempty open sets $V_1, V_2, \ldots, V_l \in V$ so that

(6)
$$P_a(V_i) \cap P_a(V_i) = \emptyset, \quad i \neq j, \quad a \in A,$$

and

(7)
$$\prod_{a \in B} P_a \left(\bigcup_{i=1}^l V_i \right) \subset P_B(V), \quad B \in T_K.$$

Assume now that a positive $c \in R$ and an $s \in N$ satisfy the following:

(8) For each nonempty open $U \subset X$ there exists a measure (Y^U, Z^U) on U so that

$$\beta((Y^U, Z^U)) \le c \| (Y^U, Z^U) \|, \quad |Y^U| = |Z^U| = s.$$

Let V be any empty open set in X, and let the nonempty open sets $V_1, V_2, \ldots, V_l \subset V$ satisfy (6) and (7), where $l \in N$ will be defined later on. Let (Y^{V_i}, Z^{V_i}) , $i = 1, 2, \ldots, l$ be measures satisfying (8) for $U = V_i$. Our aim is to show that we can replace the pair c, s with a pair c', s' with c' smaller than c and thus by iteration we shall get the desired family \mathscr{E} . Since every open set contains two distinct points (by the fullness of T_k) it is evident that c = s = 1 will satisfy (8). Set $Y = \bigcup_{i=1}^{l} Y^{V_i}, Z = \bigcup_{i=1}^{l} Z^{V_i}$. By (6) $V_i \cap V_j = \emptyset$ if $i \neq j$. Hence the measure (Y, Z) on V is well defined, and by (8) the following holds:

(9)
$$\beta((Y,Z)) \le c \| (Y,Z) \|, |Y| = |Z| = ls.$$

It is easy to check that from (6) it follows that

(10)
$$|P_a(D)| \ge \frac{|D \cap (Y \cup Z)|}{2s}$$
 for every $D \subset X$ and each $a \in A$.

Let (Y^a, Z^a) , $a \in A$ be measures which satisfy (4) and (5). Denote $Y_0 = Y$, $Z_0 = Z$, $Y_0^a = Y^a$, $Z_0^a = Z^a$, $a \in A$. We shall construct, by induction on i, measures (Y_i, Z_i) , (Y_i^a, Z_i^a) , $a \in A$ on V. Assume that

$$(Y_{i-1},Z_{i-1})_a=(Y_{i-1}^a,Z_{i-1}^a)_a, \qquad Y_{i-1}^a\subset Y_{i-1}, \quad Z_{i-1}^a\subset Z_{i-1}$$

(for i = 1 this is satisfied), and let B_i be some element of T_K . Assume that

(11)
$$\left| P_{B_i}(V) \cap \prod_{a \in B_i} P_a(Y_{i-1}^a) \right| > |P_{B_i}(Y_{i-1} \cup Z_{i-1})|.$$

Then, obviously, there is some $z \in V \setminus (Y_{i-1} \cup Z_{i-1})$ such that $P_a(z) \in P_a(Y_{i-1}^a)$ for each $a \in B_i$. It follows that $P_a(z) = P_a(y^a)$, $a \in B_i$ for some $y^a \in Y_{i-1}^a$. Similarly, if

(12)
$$\left| P_{B_i}(V) \cap \prod_{a \in B_i} P_a(Z_{i-1}^a) \right| > |P_{B_i}(Y_{i-1} \cup Z_{i-1} \cup z)|,$$

then there is $y \in V \setminus (Y_{i-1} \cup Z_{i-1} \cup z)$ and $z^a \in Z_{i-1}^a$, $a \in B_i$ such that $P_a(y) = P_a(z^a)$.

Define $Y_i = Y_{i-1} \cup y$, $Z_i = Z_{i-1} \cup z$ and for each $a \in A$

$$Y_i^a = \begin{cases} Y_{i-1}^a \setminus y_a, & a \in B_i, \\ Y_{i-1}^a \cup y, & a \notin B_i; \end{cases} \qquad Z_i^a = \begin{cases} Z_{i-1}^a \setminus z_a, & a \in B_i, \\ Z_{i-1}^a \cup z, & a \notin B_i, \end{cases}$$

It is easy to verify that the measures (Y_i, Z_i) and (Y_i^a, Z_i^a) , $a \in A$ on V are well defined and that $(Y_i, Z_i)_a = (Y_i^a, Z_i^a)_a$, $Y_i^a \subset Y_i$, $Z_i^a \subset Z_i$,

$$|Y_i| = |Y_{i-1}| + 1, \quad |Z_i| = |Z_{i-1}| + 1,$$

$$|Y_i^a| = |Y_{i-1}^a| + (1_{A \setminus B_i} - 1_{B_i})(a) = |Y_{i-1}^a| + (1_A - 2 \cdot 1_{B_i})(a),$$

$$|Z_i^a| = |Z_{i-1}^a| + (1_A - 2 \cdot 1_{B_i})(a), \quad |Y_{i-1}^a \setminus Y_i^a| \le 1, \quad |Z_{i-1}^a \setminus Z_i^a| \le 1.$$

Assume now that this procedure can be carried out for i = 1, 2, ..., t (i.e. we assume that (11) and (12) hold for i = 1, 2, ..., t). It follows from the above that

$$(Y_i, Z_i)_a = (Y_i^a, Z_i^a)_a,$$

(14)
$$|Y_i| = |Z_i| = |Y| + i = ls + i$$
 (see (9)),

$$|Y_i^a| = |Z_i^a| = |Y^a| + (i \cdot 1_A - 2(1_{B_1} + 1_{B_2} + \dots + 1_{B_i}))(a)$$

$$= \frac{1}{2}\beta + f_i(a),$$
(15)

where $f_i = i \cdot 1_A - 2(1_{B_1} + 1_{B_2} + \cdots + 1_{B_i})$ and

$$\beta = \beta((Y, Z)) = \|(Y^a, Z^a)\| = 2|Y^a|$$
 (see (5)),

$$(16) |Y^a \setminus Y_i^a| \leq i, |Z^a \setminus Z_i^a| \leq i.$$

We return now to conditions (11) and (12). By (7) we have

$$P_{B_i}(V) \supset \prod_{a \in B_i} P_a \left(\bigcup_{j=1}^l V_j \right) \supset \prod_{a \in B_i} P_a(Y^a),$$

therefore

$$P_{B_i}(V) \cap \prod_{a \in B_i} P_a(Y_{i-1}^a) \supset \prod_{a \in B_i} P_a(Y^a \cap Y_{i-1}^a).$$

By (10) and (4)

$$|P_a(Y^a \cap Y_{i-1}^a)| \ge \frac{|(Y^a \cap Y_{i-1}^a) \cap (Y \cup Z)|}{2s} = \frac{|Y^a \cap Y_{i-1}^a|}{2s}$$

and by (16)

$$|Y^a \cap Y_{i-1}^a| \ge |Y^a| - (i-1).$$

By (5) $|Y^a| = \frac{1}{2} \| (Y^a, Z^a) \| = \frac{1}{2} \beta((Y, Z)) = \frac{1}{2} \beta$. Since $X \subset R_A$ is a basic embedding $\beta \ge \alpha \| (Y, Z) \|$ by Theorem 1. Hence, in view of (9),

$$|Y^a| = \frac{1}{2}\beta \ge \frac{1}{2}\alpha \| (Y, Z) \| = \alpha ls.$$

Thus we have

$$\left| P_{B_i}(V) \cap \prod_{a \in B_i} P_a(Y_{i-1}^a) \right| \ge \prod_{a \in B_i} \frac{|Y^a \cap Y_{i-1}^a|}{2s} \ge \left(\frac{|Y^a| - (i-1)}{2s} \right)^{|B_i|}$$

$$\ge \left(\frac{\alpha ls - i + 1}{2s} \right)^K$$

(since $B_i \in T_K$, so $|B_i| = K$).

Similarly, we obtain

$$\left|P_{B_i}(V)\cap\prod_{a\in B_i}P_a(Z_{i-1}^a)\right| \geq \left(\frac{\alpha ls-i+1}{2s}\right)^K.$$

On the other hand, by (14) we have

$$|P_{B_i}(Y_{i-1} \cup Z_{i-1})| \le |Y_{i-1}| + |Z_{i-1}| = 2ls + 2i - 2 < 2ls + 2i$$

and

$$|P_{B_i}(Y_{i-1} \cup Z_{i-1} \cup z)| \le |Y_{i-1}| + |Z_{i-1}| + 1 = 2ls + 2i - 1 < 2ls + 2i.$$

Hence from the condition

$$\left(\frac{\alpha ls - i + 1}{2s}\right)^{\kappa} > 2ls + 2i$$

(11) and (12) follow. Since for any i = 1, 2, ..., t, $\alpha ls - i + 1 \ge \alpha ls - t + 1$ and $2ls + 2t \ge 2ls + 2i$, the condition

(17)
$$\alpha ls - t \ge 0, \qquad \left(\frac{\alpha ls - t + 1}{2s}\right)^{K} > 2ls + 2t$$

implies (11) and (12) for each i = 1, 2, ..., t. Hence if (17) holds, we can construct measures (Y_t, Z_t) , (Y_t^a, Z_t^a) , $a \in A$ which satisfy (13), (14), and (15).

Recall now that T_K is full, and therefore (3) holds. It follows that the sets B_i can be chosen in T_K so that $n_A 1_A = \sum_{i=1}^n 1_{B_i}$, where $n = \sum_{B \in T_K} n_B$ (see (3)). For i > n define B_i by $B_i = B_{i \mod n}$. It follows that for $t \equiv n \mod n$,

$$f_t = t \cdot 1_A - 2(1_{B_1} + 1_{B_2} + \cdots + 1_{B_t}) = t \cdot 1_A - \frac{2n_A t}{n} 1_A = \left(t - \frac{2n_A t}{n}\right) 1_A.$$

Assume now that $|A| \leq 2K$. Then by (3)

$$n_A |A| = n_A I(1_A) = I(n_A 1_A) = I\left(\sum_{B \in T_r} n_B 1_B\right) = \sum_{B \in T_r} n_B I(1_B) = K\left(\sum_{B \in T_r} n_B\right) = Kn,$$

and hence $n_A/n = K/|A| \ge K/2K = \frac{1}{2}$. Therefore for $t \equiv n \mod n$, $f_t = (t - 2n_A t/n) 1_A \le 0$, i.e. $f_t(a) \le 0$ for each $a \in A$.

Since $K \ge 2$, it is easy to check that for a sufficiently large $l \in N$ we may choose t so that (17) holds and such that $t \ge \frac{1}{2} \alpha l s$ and $t = n \mod n$. It follows that for this t the measures (Y_t, Z_t) and (Y_t^a, Z_t^a) can be constructed. Then by (15)

$$|Y_t^a| = |Z_t^a| = \frac{1}{2}\beta + f_t(a) \le \frac{1}{2}\beta$$

(since $f_t(a) \leq 0$).

By (9)
$$\beta = \beta((Y, Z)) \le c \| (Y, Z) \| = 2cls$$
. Hence

$$||(Y_t^a, Z_t^a)|| = |Y_t^a| + |Z_t^a| \le 2cls.$$

As $t \ge \frac{1}{2} \alpha ls$ we get by (14)

$$\|(Y_t, Z_t)\| = |Y_t| + |Z_t| = 2(ls+t) \ge 2(ls+\frac{1}{2}\alpha ls) = ls(2+\alpha).$$

It follows that

$$\|(Y_t^a, Z_t^a)\| \le 2cls = c\frac{2}{2+\alpha}ls(2+\alpha) \le c\frac{2}{2+\alpha}\|(Y_t, Z_t)\|.$$

Obviously $\|\mu_{\alpha}\| \le \|\mu\|$ for any Borel measure μ . Therefore from (13) it follows that

$$\|(Y_t, Z_t)_a\| = \|(Y_t^a, Z_t^a)_a\| \leq \|(Y_t^a, Z_t^a)\|.$$

Hence

$$\beta((Y_t, Z_t)) = \max\{ \| (Y_t, Z_t)_a \| : a \in A \} \le \max\{ \| Y_t^a, Z_t^a) \| : a \in A \}$$
$$\le c \frac{2}{2+\alpha} \| (Y_t, Z_t) \|.$$

We have shown that if (8) holds it does so also with $c' = c(2/2 + \alpha)$ and s' = ls + t. Therefore, by iteration there exists for each n a measure (Y_*, Z_*) such that $\beta((Y_*, Z_*)) \le (2/(2 + \alpha))^n \| (Y_*, Z_*) \|$. As remarked in the beginning of the proof this verifies Theorem 2.

We turn now to the second part of this paper. Recall first the following facts from dimension theory (see [1]).

A finite-dimensional compact space X is called a Cantor manifold, if for all closed $F \subset X$ with dim $F \leq \dim X - 2$, $X \setminus F$ is connected. It is well known that each n-dimensional compact metric space contains some n-dimensional Cantor manifold. It is easy to show that for every closed subset F of a Cantor manifold X with int $F \neq \emptyset$, dim $F = \dim X$. A subset F of R^n is n-dimensional if and only if int $F \neq \emptyset$.

The dimension $\dim f$ of a mapping $f: X \to Y$ is defined by $\dim f = \sup \{\dim f^{-1}(y): y \in Y\}$. The well known theorem of Hurewicz says, in particular, that for a continuous function $f: X \to Y$ of compact metric spaces $\dim X \le \dim Y + \dim f$. We begin with the following definition.

DEFINITION 3. An embedding $X \subset R_A$ is said to be zero-dimensional if for each $B \subset A$, so that |B| = |A| - 1, $\dim(P_B|_X) = 0$, where $P_B|_X$ is the restriction of P_B to X.

Note that by $R_B \subset R_A$ we understand that $B \subset A$ and R_B is identified with $R_B^{\nu} = y \times R_B$ for some $y \in R_{A \setminus B}$. It is easy to prove

PROPOSITION 1. Let $X \subset R_A$ be a basic (zero-dimensional) embedding, and let $F \subset X \cap R_B \subset R_A$ be closed in X. Then the induced embedding $F \subset R_B$ is a basic (zero-dimensional) embedding.

The following proposition shows that we may restrict ourselves to basic zero-dimensional embeddings.

PROPOSITION 2 [5]. Let $X \subset R_A$ be a basic embedding of an n-dimensional compact metric space X, where $n \ge 2$. Then there exist some n-dimensional compact metric space F and some basic zero-dimensional embedding $F \subset R_B$ so that $|B| \le |A|$.

PROOF. By Proposition 1, we may assume that X is a Cantor manifold. If $X \subset R_A$ is not zero-dimensional, then there exists some $b \in A$ so that $\dim P_B \mid_X > 0$, where $B = A \setminus b$. Hence there exists $R_b \subset R_A$ such that $\dim(R_b \cap X) \ge 1$. It follows that $R_b \cap X$ contains a closed interval I. Let $F_1 = P_b^{-1}(I) \cap X$. Clearly int $F_1 \ne \emptyset$, and since X is a Cantor manifold, $\dim F_1 = n \ge 2$. It follows that $I \ne F_1$. Then there exists some closed $F_2 \subset F_1$ so that $F_2 \cap I = \emptyset$ and int $F_2 \ne \emptyset$. Hence $\dim F_2 = n$, and we claim that $P_B \mid_{F_2}$ is an injection. Indeed, if not, then there exist $x_1, x_2 \in F_2$ so that $P_B(x_1) = P_B(x_2)$. Let $x_4 = P_b(x_1) \in I$ and $x_3 = P_b(x_2) \in I$. Set $\mu = \delta_{x_1} - \delta_{x_2} + \delta_{x_3} - \delta_{x_4}$. It is easy to check that $\beta(\mu) = 0$, and by Theorem 1 we obtain a contradiction.

Let $F = P_B(F_2)$. Then dim $F = \dim F_2 = n$, and we shall show now that the embedding $F \subset R_B$ is basic. Given $\varphi \in C(F)$, define $f \in C(F_2 \cup I)$ as follows: f(x) = 0 if $x \in I$ and $f(x) = \varphi(P_B(x))$ if $x \in F_2$. Clearly $F_2 \cup I \subset R_A$ is basic. Hence there are $g_a \in C(R_a)$, $a \in A$, such that for all $x = (x_a)_{a \in A} \in F_2 \cup I$, $f(x) = \sum_{a \in A} g_a(x_a)$.

It is easy to check that $g_b \mid_I \equiv \text{const.}$ Hence the functions g_a can be chosen such that $g_b \equiv 0$. Then $\varphi(x) = \sum_{a \in B} g_a(x_a)$ for $x = (x_a)_{a \in B} \in F$, i.e., $F \subset R_B$ is a basic embedding.

This procedure can be continued till we end up with a basic zero-dimensional embedding. This proves Proposition 2.

DEFINITION 4. An embedding $X \subset R_A$ is said to be reduced if the following hold:

- (a) X is a Cantor manifold;
- (b) int $P_a(X) \neq \emptyset$ in R_a for every $a \in A$;
- (c) if int $P_B(X) \neq \emptyset$ in R_B , $B \subset A$, then int $P_B(V) \neq \emptyset$ in R_B , for each nonempty open V in X.

The next proposition motivates the introduction of this definition.

PROPOSITION 3 [4]. Let $X \subset R_A$ be a compact metric space. Then there exists $F \subset X \cap R_B \subset R_B \subset R_A$ so that dim $F = \dim X$, and the embedding $F \subset R_B$ is reduced.

PROOF. Let $n = \dim X$, and let $X_1 \subset X$ be an n-dimensional Cantor manifold. If int $P_a(X) = \emptyset$ for some $a \in A$, then $X_1 \subset R_{A_1}$ for some $R_{A_1} \subset R_A$, $A_1 = A \setminus a$, and we reduce $X \subset R_A$ to the embedding $X_1 \subset R_{A_1}$.

On the other hand if int $P_B(X_1) \neq \emptyset$, for $B \subset A$, and int $P_B(V) = \emptyset$ for some open $V \subset X_1$, then for every *n*-dimensinal Cantor manifold $X_2 \subset V$, int $P_B(X_2) = \emptyset$ and we reduce $X_1 \subset R_A$ to the embedding $X_2 \subset R_A$.

This procedure can be continued and, since it must end after finitely many steps, we shall end up with a reduced embedding. This proves Proposition 3.

Denote $\gamma_n = \min\{|A|: \text{ there exists a reduced basic zero-dimensional embedding } X \subset R_A \text{ so that dim } X = n\}.$

From Propositions 1, 2 and 3 it follows that we may restrict ourselves to reduced basic zero-dimensional embeddings (r.b.z. embeddings in short), i.e. Sternfeld's theorem is equivalent to $\gamma_n \ge 2n + 1$, $n \ge 2$.

Proposition 4 [5]. $\gamma_{n+1} > \gamma_n$.

PROOF. Let dim X = n + 1, and let $X \subset R_A$ be an r.b.z. embedding with $|A| = \gamma_{n+1}$. Since dim $P_a(X) \le 1$ for every $a \in A$, it follows from Hurewicz's theorem that dim $P_a \mid_X \ge n$, and hence there exists some $R_B \subset R_A$, $B = A \setminus a$ so that dim $(X \cap R_B) \ge n$. By Propositions 1 and 3 there is some $F \subset X \cap R_{B_1} \subset R_{B_1} \subset R_B$ so that dim $F = \dim(X \cap R_B) \ge n$, and $F \subset R_{B_1}$ is an r.b.z. embedding. Since $|B_1| \le |B| = |A| - 1 < \gamma_{n+1}$, dim $F \le n$. Hence dim F = n, and $\gamma_n \le |B_1| < \gamma_{n+1}$. This proves Proposition 4.

Proposition 5. $\gamma_1 \ge 2$, $\gamma_2 \ge 4$.

PROOF. If $\gamma_1 = 1$ then there is an r.b.z. embedding $X \subset R_a$, $a \in N$ with dim X = 1. Hence dim $P_{\phi}|_{x} = 1$, and therefore the embedding $X \subset R_a$ is not zero-dimensional. Thus $\gamma_1 \ge 2$.

By Proposition 4, $\gamma_2 \ge 3$. Assume that there exists some r.b.z. embedding $X \subset R_A$ so that dim X = 2 and $A = \{a_1, a_2, a_3\}$. Then dim $P_B \mid_X = 0$ for every $B \subset A$ with |B| = 2. From Hurewicz's theorem it follows that dim $P_B(X) \ge 2$, and hence int $P_B(X) \ne \emptyset$ in R_B . Since $X \subset R_A$ is reduced, $B \in T_2 = T_2(X \in R_A)$. Therefore $T_2 = \{\{a_1, a_2\}, \{a_1, a_3\}, \{a_2, a_3\}\}$, and we obtain

$$1_A = \frac{1}{2} 1_{\{a_1,a_2\}} + \frac{1}{2} 1_{\{a_1,a_3\}} + \frac{1}{2} 1_{\{a_2,a_3\}},$$

i.e. T_2 is full. By Theorem 2, this implies $|A| \ge 4$ and contradicts the assumption that |A| = 3. Hence $\gamma_2 \ge 4$, and Proposition 5 is proved.

PROPOSITION 6. Let $X \subset R_A$ be an r.b.z. embedding so that dim X = 1. Then $T_1(X \subset R_A)$ is 2-full.

PROOF. As $\gamma_1 \ge 2$, $|A| \ge 2$. Let $A = \{a_1, a_2, \ldots\}$. The embedding $X \subset R_A$ is reduced. It follows that int $P_a(X) \ne \emptyset$ for each $a \in A$.

Hence $T_1(X \subset R_A) = \{\{a_1\}, \{a_2\}, \ldots\}$. Let $1_A = f + 1_{a_1} + 1_{a_2}$. Obviously $f \in C^+(N)$ and I(f) = |A| - 2. This proves Proposition 6.

Consider the following statements.

 (\mathbf{M}_K) : $\gamma_K \geq 2K$.

 (H_K) : $T_K(X \subset R_A)$ is 2K-full for each r.b.z. embedding $X \subset R_A$ with $\dim X = K$.

By Propositions 5 and 6, the statements M_1 , M_2 and H_1 hold. The following proposition will be proved later.

Proposition 7. The statements M_K , H_K and M_{K+1} imply H_{K+1} .

We shall show now that the following theorem, which is equivalent to Sternfeld's theorem, follows from Proposition 7.

THEOREM 3. $\gamma_n \ge 2n + 1$ for $n \ge 2$.

PROOF. By Proposition 7, M_1 , H_1 and M_2 imply H_2 . If $\gamma_2 = 4$, then there is an r.b.z. embedding $X \subset R_A$ so that |A| = 4. Since H_2 holds and |A| = 4, $T_2(X \subset R_A)$ is full and, by Theorem 2, |A| > 4. This contradiction proves that $\gamma_2 \ge 5$.

By Proposition 4, $\gamma_3 \ge 6$, i.e. M_3 holds. Similarly, since M_2 , H_2 and M_3 hold, by Proposition 7 H_3 holds as well, and by Theorem 2, $\gamma_3 \ge 7$. This procedure can be continued, and we obtain $\gamma_n \ge 2n + 1$ for each $n \ge 2$, and Theorem 3 is proved.

For the proof of Proposition 7 we need the following.

LEMMA 1 [5]. Let $X \subset R_A$ be a reduced embedding, and let $K = \dim X - 1 \ge 0$. Then for each $a \in A$ there exist $B_a \subset A \setminus a$ and $F_a \subset X \cap R_{B_a} \subset R_{B_a} \subset R_A$, with dim $F_a = K$, so that the embedding $F_a \subset R_{B_a}$ is reduced, and $a \cup B \in T_{K+1}(X \subset R_A)$ for every $B \in T_K(F_a \subset R_{B_a})$.

PROOF. Let $y \in \text{int } P_a(X)$, $a \in A$, and set $B = A \setminus a$. Since X is a Cantor manifold, $\dim(X \cap R_B^y) \geq K$ (recall that $R_B^y = y \times R_B \subset R_A$). Pick some closed K-dimensional $X_y \subset X \cap R_B^y$. By Proposition 3 there exists some $F_y \subset X_y \cap R_{B_y} \subset R_{B_y} \subset R_B^y$ so that $F_y \subset R_{B_y}$ is reduced and $\dim F_y = K$. Set $T = \{B : |B| = K, B \subset A\}$. As the set A is finite, T is finite too. Let $T = \{B_1, B_2, \ldots, B_n\}$, and let $\{V_j^i\}_{j=1}^\infty$ be a basis for the topology of R_{B_i} , $i = 1, 2, \ldots, n$. Clearly $T_K = T_K(F_y \subset R_{B_y}) \subset T$, and therefore $T_K = \{B_{i_1}, B_{i_2}, \ldots, B_{i_l}\}$, where $t = t(y) = |T_K|$. It follows that $\inf P_{B_{i_l}}(F_y) \neq \emptyset$, $l = 1, 2, \ldots, t$. Hence, there exists some j_l such that $V_{j_l}^{i_l} \subset \inf P_{B_{i_l}}(F_y)$.

Let $S_y = \{i_1, j_1, i_2, j_2, \dots, i_t, j_t\}$, t = t(y). Obviously, the set of all disjoint sets S_y is countable. Hence there exists some $y \in \text{int } P_a(V)$ so that

$$W_{\nu} = \{ y' : y' \in \text{int } P_a(X) \text{ and } S_{\nu'} = S_{\nu} \}$$

is of second category in int $P_a(X)$, i.e., $V = \text{int } \bar{W_y} \neq \emptyset$. The reader may easily verify that int $P_{a \cup B_{ij}}(X) \supset V \times V_{ji}^{i_i}$, and since the embedding $X \subset R_A$ is reduced, $a \cup B_{ij} \in T_{K+1}(X \subset R_A)$.

Set $F_a = F_y$, $B_a = B_y$, and this completes the proof of Lemma 1.

Let $A \subset N$ be a finite set, let $a \in A$, and let $f \in C^+(N)$. The pair (a, A) is said to be singular for f if f(a) > 0, and for each $B \subset N$ so that $a \in B \subset A$, $\sum_{b \in B} f(b) \ge |B| f(d)$ for all $d \in A \setminus B$. Clearly if (a, A) is a singular pair for $f \in C^+(N)$, then for every B so that $a \in B \subset A$, the pair (a, B) is singular for f.

LEMMA 2. Let $A \subset N$ be a finite set and let $f_a \in C^+(N)$, $a \in A$. If for each $a \in A$ the pair (a, A) is singular for f_a , then there exist reals $\lambda_a \ge 0$ such that $1_A = \sum_{a \in B} \lambda_a (1_A \cdot f_a)$.

PROOF. For $f \in C^+(N)$ set min $f = \min\{f(a) : a \in A\}$, $M(f) = \{a : f(a) = \min f, a \in A\}$. Denote $G = \{\sum_{a \in A} \lambda_a (1_A \cdot f_a) : \lambda_a \ge 0\} \subset C^+(N)$, $m(G) = \min\{|M(f)| : f \in G \text{ and } \min f \ne 0\}$.

Since $g_a(a) > 0$, $a \in A$, $\min(\Sigma_{a \in A} 1_A \cdot f_A) \neq 0$. Therefore $m(G) \ge 1$. Obviously, the lemma is satisfied for |A| = 1. Assume now that the lemma holds for $|A| = 1, 2, \ldots, n - 1$, and we shall prove it for |A| = n.

Clearly if m(G) = n, then the lemma holds for |A| = n. Let m(G) < n. Then there exists some $f \in G$ so that |M(f)| = m(G). Set B = M(f). For every $a \in B$ the pair (a, B) is singular for f_a and by the assumption there exists reals $\lambda'_a \ge 0$ so that $1_B = \sum_{a \in B} \lambda'_a (1_B \cdot f_a)$.

Denote $S = \sum_{a \in B} \lambda'_a(1_A \cdot f_a)$ and let $S_x = f + xS$ for $x \in R$, $x \ge 0$. Obviously $S \in G$ and $S_x \in G$. Let $d \in A \setminus B$ and $a \in B$. Since (a, A) is singular for f_a , $\sum_{b \in B} f_a(b) \ge |B| f_a(d)$.

From the above it follows that

$$|B|S(d) = |B| \left(\sum_{a \in B} \lambda'_a(1_A \cdot f_a)\right)(d) = \sum_{a \in B} \lambda'_a(|B| \cdot f_a(d)) \le \sum_{a \in B} \lambda'_a\left(\sum_{b \in B} f_a(b)\right)$$

$$= \sum_{b \in B} \left(\sum_{a \in B} \lambda'_a f_a(b)\right) = \sum_{b \in B} \left(\sum_{a \in B} \lambda'_a(1_B \cdot f_a)\right)(b) = \sum_{b \in B} 1_B(b) = |B|.$$

Hence $S(d) \le 1$ for $d \in A \setminus B$. If S(d) = 1 for all $d \in A \setminus B$, then $S = 1_A$ and m(G) = |A| = n. Hence there is some $d \in A \setminus B$ so that S(d) < 1. Let $b \in B$. Then f(d) > f(b). Since $S_x(d) = f(d) + xS(d)$ and $S_x(b) = f(b) + xS(b) = f(b) + x$, there is $x \ge 0$ so that $S_x(d) = S_x(b)$. It follows that for some $0 \le y \le x$, $|M(S_y)| \ge |B| + 1$. This contradiction proves Lemma 2.

PROOF OF PROPOSITION 7. Let $X \subset R_A$ be an r.b.z. embedding with dim X = K + 1. By Lemma 1, for each $a \in A$ there exists an r.b.z. embedding $F_a \subset R_{B_a}$ so that $B_a \subset A \setminus a$, dim $F_a = K$ and $a \cup B \in T = T_{K+1}(X \subset R_A)$ for every $B \in T_a = T_K(F_a \subset R_{B_a})$.

Recall that we assume M_K , H_K and M_{K+1} . Therefore

(18)
$$1_{B_a} = f_a + \varphi_a, \quad I(f_a) = |B_a| - 2K,$$

where $f_a \in C^+(N)$ and $\varphi_a = \sum_{B \in T_a} \lambda_B^a 1_B$, $\lambda_B^a \ge 0$. It follows that

(19)
$$I(\varphi_a) = I(1_{B_a}) - I(f_a) = |B_a| - (|B_a| - 2K) = 2K.$$

Set $G = \{ \Sigma_{B \in T} \lambda_B 1_B : \lambda_B \ge 0 \} \subset C^+(N)$.

Denote $\tilde{\varphi}_a = \sum_{B \in T_a} \lambda_B^a \, 1_{a \cup B}$. Clearly $\tilde{\varphi}_a \in G$ and $\tilde{\varphi}_a(a) = \sum_{B \in T_a} \lambda_B^a$ and since

$$I(\varphi_a) = I\left(\sum_{B \in T_a} \lambda_B^a \, 1_B\right) = \sum_{B \in T_a} \lambda_B^a \, I(1_B) = K \sum_{B \in T_a} \lambda_B^a \,,$$

by (19) $\Sigma_{B \in T_a} \lambda_B^a = 2$, and we obtain $\tilde{\varphi}_a(a) = 2$. Now it is clear that

$$\tilde{\varphi}_a = \varphi_a + 2 \cdot 1_a.$$

Let $\psi_a = (|A| - 2K - 2)1_a$. Then, by M_{K+1} , $\psi_a \in C^+(N)$.

Set $\Phi_a = \tilde{\varphi}_a + \psi_a$. We shall show that the pair (a, A) is singular for Φ_a . Indeed, let $a \in Z \subset A$ and $b \in A \setminus Z$. Then by (18) and (20)

$$\sum_{z \in Z} \Phi_{a}(z)$$

$$= \sum_{z \in Z} \tilde{\varphi}_{a}(z) + \sum_{z \in Z} \psi_{a}(z) = \tilde{\varphi}_{a}(a) + \psi_{a}(a) + \sum_{z \in Z \cap B_{a}} \varphi_{a}(z)$$

$$= 2 + |A| - 2K - 2 + \sum_{z \in Z \cap B_{a}} \varphi_{a}(z) = |A| - |B_{a}| + I(f_{a}) + \sum_{z \in Z \cap B_{a}} \varphi_{a}(z)$$

$$\geq |A| - |B_{a}| + \sum_{z \in Z \cap B_{a}} f_{a}(z) + \varphi_{a}(z) = |A| - |B_{a}| + |Z \cap B_{a}| \geq |Z|$$

$$\geq |Z|(f_a(b)+\varphi_a(b)) \geq |Z|\varphi_a(b) = |Z|\Phi_a(b).$$

Hence the pair (a, A) is singular for Φ_a . Since $1_A \cdot \Phi_a = \Phi_a$, it follows from Lemma 2 that there are reals $\lambda_a \ge 0$ so that $1_A = \sum_{a \in A} \lambda_a \Phi_a$. Let $\varphi = \sum_{a \in A} \lambda_a \tilde{\varphi}_a$ and $\psi = \sum_{a \in A} \lambda_a \psi_a$.

Obviously $\psi \in C^+(N)$, $\varphi \in G$ and $1_A = \psi + \varphi$. By (18), (19), and (20) we obtain

$$|A| = I(1_A) = I(\psi + \varphi) = I(\psi) + I(\varphi) = \sum_{a \in A} \lambda_a I(\psi_a) + \sum_{a \in A} \lambda_a I(\tilde{\varphi}_a)$$

$$= \sum_{a \in A} \lambda_a (|A| - 2K - 2) + \sum_{a \in A} \lambda_a (2 + I(\varphi_a))$$

$$= \sum_{a \in A} \lambda_a (|A| - 2K - 2) + \sum_{a \in A} \lambda_a (2 + 2K) = |A| \sum_{a \in A} \lambda_a.$$

Hence

$$\sum_{a \in A} \lambda_a = 1$$

and

$$I(\psi) = \sum_{a \in A} \lambda_a I(\psi_a) = \sum_{a \in A} \lambda_a (|A| - 2K - 2) = |A| - 2K - 2.$$

Thus T is 2(K + 1)-full, and the proposition follows.

REFERENCES

- 1. W. Hurewicz and H. Wallman, Dimension Theory, Princeton, 1974.
- 2. A. N. Kolmogorov, On the representation of continuous functions of many variables by superpositions of continuous functions of one variable and addition, Dokl. Akad. Nauk SSSR 114 (1957), 953-956; Am. Math. Soc. Transl. (2) 28 (1963), 55-61.
- 3. P. A. Ostrand, Dimension of metric spaces and Hilbert's problem 13, Bull. Am. Math. Soc. 71 (1965), 619-622.
- 4. Y. Sternfeld, Superpositions of continuous functions, J. Approx. Theory 22 (1979), 360-368.
- 5. Y. Sternfeld, Dimension, superposition of functions and separation of points, in compact metric spaces, Isr. J. Math. 50 (1985), 13-53.
- 6. Y. Sternfeld, Hilbert's 13th problem and dimension, in Geometric Aspects of Functional Analysis (J. Lindenstrauss and V. Milman, eds.), Lecture Notes in Math. 1376, Springer-Verlag, Berlin, 1987-8, pp. 1-49.